The realization space is [1 1 0 x1^2 0 1 1 0 x1^2 1 x1] [0 1 1 x1^3 - 2*x1^2 + 3*x1 - 1 0 0 1 x1 x1^3 - 2*x1^2 + 3*x1 - 1 x1 x1^2] [0 0 0 0 1 1 1 -x1 + 1 -x1^3 + 3*x1^2 - x1 -x1 + 1 -x1^2 + 3*x1 - 1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (2*x1^7 - 15*x1^6 + 41*x1^5 - 59*x1^4 + 51*x1^3 - 27*x1^2 + 8*x1 - 1) avoiding the zero loci of the polynomials RingElem[2*x1 - 1, x1, x1 - 1, x1^2 - 3*x1 + 1, x1^4 - 5*x1^3 + 6*x1^2 - 4*x1 + 1, x1^5 - 5*x1^4 + 8*x1^3 - 9*x1^2 + 5*x1 - 1, x1^3 - 2*x1^2 + 3*x1 - 1, x1^3 - 5*x1^2 + 4*x1 - 1, x1^2 - x1 + 1]